The Coral Symbiomics Lab
Red Sea Research Center
Division of Biological and Environmental Science and Engineering

Nimmo_2019_elife

Genetic transformation of the dinoflagellate chloroplast

            Nimmo, Isabel C, Adrian C Barbrook, Imen Lassadi, Jit Ern Chen, Katrin Geisler, Alison G Smith, Manuel Aranda, et al.“Genetic Transformation of the Dinoflagellate Chloroplast.” ELife 8 (July 18, 2019): e45292

Isabel C Nimmo, Adrian C Barbrook, Imen Lassadi, Jit Ern Chen, Katrin Geisler, Alison G Smith, Manuel Aranda, Saul Purton, Ross F Waller, R Ellen R Nisbet, Christopher J Howe
dinoflagellate, chloroplast transformation
2019
​Coral reefs are some of the most important and ecologically diverse marine environments. At the base of the reef ecosystem are dinoflagellate algae, which live symbiotically within coral cells. Efforts to understand the relationship between alga and coral have been greatly hampered by the lack of an appropriate dinoflagellate genetic transformation technology. By making use of the plasmid-like fragmented chloroplast genome, we have introduced novel genetic material into the dinoflagellate chloroplast genome. We have shown that the introduced genes are expressed and confer the expected phenotypes. Genetically modified cultures have been grown for 1 year with subculturing, maintaining the introduced genes and phenotypes. This indicates that cells continue to divide after transformation and that the transformation is stable. This is the first report of stable chloroplast transformation in dinoflagellate algae.